Infographic: Cross-Kingdom RNAi

Evidence from laboratory studies of plants and their fungal pathogens indicates that both parties can fling RNAs back and forth into the other’s cells.

kerry grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

The plant produces a small RNA precursor, either a long double-stranded RNA or a pre-microRNA, with sequence similarity to a fungal gene (1). Researchers have engineered the sequence into the genomes of crop plants or model organisms and demonstrated superior fungal resistance, although one recent study showed plants may naturally encode sequences to protect themselves against pathogens.

Evidence points to the idea that the small RNA precursors can pass directly to the fungal cell (2) or undergo processing into small RNAs prior to transfer (3). If the precursor leaves the plant intact, the fungus’s processing machinery chops it up (4). In either case, the result is a plant small RNA inside the fungal cell, though the mechanism of transfer remains unknown.

Upon additional processing in the fungal cell, a single strand of the small RNA becomes part of the RNA-induced silencing complex (RISC), which then destroys an mRNA with a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit