Infographic: Selective Autophagy

Xenophagy targets bacterial pathogens for destruction, while mitophagy aids red blood cell maturation.

Written byVikramjit Lahiri and Daniel J. Klionsky
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

In contrast to nonselective autophagy, which digests various cellular cargos randomly, selective versions of this process can target specific molecules, organelles, or even whole organisms for degradation. For example, during the maturation of oxygen-transporting red blood cells called erythrocytes, a selective form of autophagy known as mitophagy eliminates most mitochondria from precursor cells called reticulocytes. Another type of selective autophagy, called xenophagy, involves the targeted digestion of bacterial pathogens.

© N.R.FULLER, SAYO-ART LLC

© N.R.FULLER, SAYO-ART LLC

Read the full story.

Correction (March 2): The author listed on the original online version of this article was incorrect. The byline is now fixed. The Scientist regrets the error.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH