Insulin Receptor Takes Center Stage

The defining characteristic of diabetes is its failure to properly maintain blood glucose levels. Normally, the elevated glucose concentration that occurs after eating induces the release of the hormone insulin from pancreatic beta cells. Cells expressing the insulin receptor can bind insulin and respond to the signal, thereby maintaining glucose homeostasis through changes in gene expression patterns and cellular metabolism. Insulin-induced effects include enhanced glucose uptake and glycogen s

Written byJeffrey Perkel
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

During the American Diabetes Association national conference this year in Philadelphia, scientists gathered to discuss recent advances in this field at a session on positive and negative elements in signal transduction. When all was said and done, some puzzle pieces were added, but questions remain.

Because diabetes essentially results from the body's failure to respond to insulin, some researchers are trying to understand the signal transduction pathways that translate the binding of insulin to its receptor into cellular activity changes. The insulin receptor's cytoplasmic portion contains an inherent tyrosine kinase activity that becomes active on extracellular insulin binding, leading to the receptor's autophosphorylation and transphosphorylation of the insulin receptor substrates (IRS-1-3).1 These proteins associate with the regulatory subunit of phosphoinositol-3-kinase (PI3K), activating the enzyme's catalytic subunit, which adds a phosphate group to the 3'-OH position of the inositol ring in inositol phospholipids.

The reaction's products activate 3'-phosphoinositide-dependent kinase (PDK1), which ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH