Intestinal Molecular Signaling

Microbes, both good and bad, can exert direct effects on host cells and vice versa.

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Infographic: Intestinal molecular signaling
View full size JPG | PDF
KEVIN HAND; SOURCE: ADAPTED FROM PHYSIOL REV, 90:859:904, 2010

Microbes, both good and bad, can exert direct effects on host cells and vice versa. For example, pathogenic bacteria such as some strains of E. coli and Salmonella reduce the overall number of normal gut commensal bacteria, promoting their own growth, whereas some commensals have been shown to prevent pathogens from producing deadly Shiga toxin. Commensals also have essential chemical exchanges with the host. Gut bacteria are required for the normal development of the immune system, and the host actively dampens its normal immune response to allow commensals to grow. Pathogenic bacteria also affect the host cells directly, releasing signals that compromise the host immunity; indeed, some host signals, such as stress hormones, can exacerbate disease by increasing bacterial virulence.

Read the full story.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • L. Caetano M. Antunes

    This person does not yet have a bio.
  • Julian E. Davies

    This person does not yet have a bio.
  • B. Brett Finlay

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo