Karl Deisseroth: Frustrated and doing something about it

Credit: D. SAMUEL MARSH PHOTOGRAPHY" /> Credit: D. SAMUEL MARSH PHOTOGRAPHY As a medical resident specializing in psychiatry, Karl Deisseroth was tired of being served neurotransmitter soup. Brains are intricate, electrical structures, so why is mental illness so often framed as a chemical imbalance? To him, it made more sense to think in terms of circuits. "Talking to a patient that's depressed," he says, "you get a sense that activity is not flowing appropriately."Dei

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

As a medical resident specializing in psychiatry, Karl Deisseroth was tired of being served neurotransmitter soup. Brains are intricate, electrical structures, so why is mental illness so often framed as a chemical imbalance? To him, it made more sense to think in terms of circuits. "Talking to a patient that's depressed," he says, "you get a sense that activity is not flowing appropriately."

Deisseroth wanted to know how signals move through interconnected cells, but common techniques to study living brains - PET and functional MRI - were too slow and imprecise to study neural networks effectively. They take measurements in seconds and millimeters rather than in milliseconds at the level of individual cells.

As a graduate student and postdoc, Deisseroth dissected the molecular interactions that occur as neurons respond and adapt to stimuli. In particular, he and colleagues found that repeated stimulation in neurons stabilize the MAP kinase pathway to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Monya Baker

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo