Labs Focusing On Neural Apoptosis

Neurons die all the time--routinely during nervous system development and to a limited extent in healthy adults. But understanding exactly how they die under less-than-ideal conditions could be the key to treating a number of neurological maladies--from stroke and brain trauma to neurodegenerative diseases such as Huntington's, Parkinson's, and Alzheimer's. As cell death research proliferates, much of it focused on cancer, investigators continue to debate the extent to which neurological ailment

Written byEugene Russo
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

Neurons die all the time--routinely during nervous system development and to a limited extent in healthy adults. But understanding exactly how they die under less-than-ideal conditions could be the key to treating a number of neurological maladies--from stroke and brain trauma to neurodegenerative diseases such as Huntington's, Parkinson's, and Alzheimer's. As cell death research proliferates, much of it focused on cancer, investigators continue to debate the extent to which neurological ailments involve programmed cell death, or apoptosis--and what implications apoptosis may have for treatment.

Many apoptosis researchers view cell damage on a continuum of sorts: On one end, damage is limited and the cell is able to fully recover and maintain functionality. On the other, the cell dies by necrosis, an irreversible, passive, "unexpected" type of cell death not encoded by genes. Somewhere in the middle lies apoptosis in which, after an orderly, "planned" cell death, the body's immune system ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies