Locust Navigation

Credit: © DARRYL SLEATH" /> Credit: © DARRYL SLEATH Birds, fish, and arthropods are among the animals that can distinguish linearly polarized light. For insects, perceiving the diurnally changing orientation of polarized light - called E-vector analysis - is a way to assist navigation. Stanley Heinze and Uwe Homberg, animal biologists at Philipps University in Germany, looked at locusts and uncovered the neural structure responsible for E-vector analysis - the protocerebral bridge lo

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Birds, fish, and arthropods are among the animals that can distinguish linearly polarized light. For insects, perceiving the diurnally changing orientation of polarized light - called E-vector analysis - is a way to assist navigation. Stanley Heinze and Uwe Homberg, animal biologists at Philipps University in Germany, looked at locusts and uncovered the neural structure responsible for E-vector analysis - the protocerebral bridge located in the center of their brains.

Martin Giurfa, a neuroscientist at the National Center for Scientific Research in Toulouse, France writes of the discovery in Faculty of 1000:

"Previous works have reported the existence of isolated neurons responding to E-vector orientation in the brain of locusts and crickets. Now, these authors report that the central complex, a brain area consisting of two subunits, the protocerebral bridge and the central body, presents a topographic representation of E-vector orientations. The protocerebral bridge of locusts has a columnar organization, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo
Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery