Long-Term Study Reveals Flip in Plant Responses to Carbon Dioxide

The 20-year project calls into question the conventional wisdom about the role plants will play in mitigating future climate change.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIMEDIA, RICHARD WEBBNot all plants fix carbon from the atmosphere in the same way. More than 90 percent of plants use what’s known as C3 carbon fixation; others such as maize and sugarcane use a variation on the process known as C4 ­carbon fixation. Based on their biology, C4 plants have long been thought to be less responsive than C3 plants to changes in carbon dioxide concentration—an important difference to take into account when studying how plants may influence future climate change.

But a report published yesterday (April 20) in Science is now calling that thinking into question with results that suggest that, over long timescales, the opposite may be true. “These findings challenge the current [C3-C4] paradigm” about carbon dioxide concentrations, the researchers write in their paper, “and show that even the best-supported short-term drivers of plant response to global change might not predict long-term results.”

C3 and C4 plants respond differently to changing carbon dioxide concentrations thanks to differences in the molecular pathways they use to capture the gas from the atmosphere. While C3 plants use an enzyme known as RuBisCO to fix carbon into a 3-carbon compound, C4 plants—many of them grasses and important crop plants—use a different enzyme to produce a 4-carbon compound ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Catherine Offord

    Catherine is a science journalist based in Barcelona.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours