Magnetic Yeast

Researchers succeed in magnetizing yeast cells, providing insight into how magnetism could be genetically induced in other organisms.

Written bySabrina Richards
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Saccharomyces cerevisiae.WIKIMEDIA COMMONS, MASUR

Yeast cells aren’t normally magnetic, but a little genetic engineering can make them thralls to a magnetic field. The research, published today (February 28) in PLoS Biology, suggests that manipulations of a few widely expressed genes could be enough to get any cell magnetized, which could be a powerful tool for both research and medicine.

“It’s a very interesting study,” said Xiaoping Hu, a biomedical engineer who investigates the potential for magnetizing mammalian cells as a possible marker for MRI detection at Emory University in Atlanta. Hu, who did not participate in the study, added that this work appears to be the first attempt to magnetize yeast, and may “give guidance” to others working to induce magnetism in eukaryotic cells.

Though some bacteria create magnetic ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH