Making the Gradient

By Karen Hopkin Making the Gradient Ron Kaback didn’t believe that electrochemical gradients could power the transport of sugars and amino acids across cell membranes—until he proved that they do. H. RONALD KABACK Professor of Physiology University of California, Los Angeles F1000 Faculty Member: Neuronal Signaling Mechanisms Photo © 2011 Jim Cornfield Ron Kaback got hooked on membrane transport as a medical student at the Albert Einstei

Written byKaren Hopkin
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

Ron Kaback got hooked on membrane transport as a medical student at the Albert Einstein College of Medicine in the late 1950s. “I went to all the biochemistry seminars, and one of the first ones I heard was given by Werner Maas, a geneticist at NYU. He had discovered the first mutants that become antibiotic resistant by losing the ability to take up the antibiotic,” he says. These mutant strains of E. coli proliferated normally in the presence of certain growth-inhibitory amino acids. “And the way they became resistant to these amino acids is they lost the ability to transport them.” The experiments Maas described reminded Kaback of a talk he’d heard as an undergraduate at Haverford College, in which Arthur Kornberg described work done by his then postdoc Paul Berg on transfer RNA—the RNAs that move amino acids to growing proteins. “So I’m sitting there listening and a light ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH