Mechanical Forces in the Ear

By Jef Akst Mechanical Forces in the Ear Online Extra Sound comes in the form of waves of compressed air, and detecting that sound is wholly dependent on the ear's ability to convert variations in air pressure to chemical signals that can be interpreted by the brain. When sound enters the ear, it deflects the eardrum that lies at the junction of the outer and middle ears. This deflection is then transmitted through the middle ear to a small membrane at the o

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Sound comes in the form of waves of compressed air, and detecting that sound is wholly dependent on the ear's ability to convert variations in air pressure to chemical signals that can be interpreted by the brain. When sound enters the ear, it deflects the eardrum that lies at the junction of the outer and middle ears. This deflection is then transmitted through the middle ear to a small membrane at the opening of the inner ear, resulting in the formation of waves in the fluid of the inner ear. Those waves flow through the cochlea in a rhythmic fashion and induce parallel deflections in the sensory hair cells that are physically coupled to the cochlea, where the mechanical force translates into a chemical signal.

Stereocilia—bundles of rigid actin filaments—protrude from the ends of the sensory hair cells. They are embedded in a fixed membrane and attached to one another ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours