Mechanisms of the Munchies

Mouse study investigates the role of cannabinoid type-1 receptors in hunger, olfaction, and food intake.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIMEDIA, ALLEN INSTITUTE FOR BRAIN SCIENCEBy increasing odor detection, cannabinoid type-1 (CB1) receptors in the olfactory bulb help mediate feeding behavior in fasted mice, according to a study published in Nature Neuroscience today (February 9). Researchers from the French Institute of Health and Medical Research (INSERM) and elsewhere have uncovered CB1 receptor-dependent mechanisms through which endocannabinoids and exogenous cannabinoids like THC, the active ingredient in marijuana, increase olfaction and subsequent fasting-induced food intake, and suggest that their work points to potential therapeutic targets for feeding behavior-related human diseases like anorexia and obesity.

“The study clearly establishes the relationship of food intake and olfactory processing and implicates the endocannabinoid system as a key player in this signaling pathway,” said Howard University College of Medicine’s Thomas Heinbockel, who has investigated the endocannabinoid system’s functions in the olfactory bulb, but was not involved in the work.

In 2010, INSERM’s Giovanni Marsicano and his colleagues showed that deletion of CB1 from cortical glutamatergic or GABAergic neurons had opposing effects on fasting-induced food intake in mice, implicating the endocannabinoid system in control of feeding behavior. For the present study, the researchers used pharmacological and genetic manipulations as well as an optogenetic approach to investigate connections between sensory input with central processing in the olfactory bulb and subsequent feeding behavior. They found that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems