MicroRNAs: An emerging portrait

0&&parent.frames.length) { d=parent.frames[n.substring(p+1)].document; n=n.substring(0,p);} if(!(x=d[n])&&d.all) x=d.all[n]; for (i=0;!x&&i MicroRNAs: An emerging portrait By Melissa Lee Phillips The RNA Conductome Human Genome as an RNA Machine One lab mines for microRNAs Fifteen years ago, no one had even heard of microRNAs. Not anymore: These small but abundant regulatory, non-coding RNAs - initially thought to be an oddity of nematode biology - appea

Written byMelissa Lee Phillips
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

By Melissa Lee Phillips

The RNA Conductome

Human Genome as an RNA Machine

One lab mines for microRNAs

Fifteen years ago, no one had even heard of microRNAs. Not anymore: These small but abundant regulatory, non-coding RNAs - initially thought to be an oddity of nematode biology - appear to control gene expression in all animals, as well as in plants, some viruses, and at least one unicellular alga. So far, scientists have tracked their activity in all major organ systems, illustrated on the following pages.

Already, we see some general principles: Some animal micro-RNAs (miRNAs) are specific to a single tissue or cell type, others are expressed across multiple organs, and each organ seems to have a unique miRNA "profile" of characteristic expression levels among a set of miRNAs. These profiles change throughout development and during diseases such as cancer, suggesting that they may be useful diagnostic tools.

There's ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH