Mitochondrial DNA recombines

Finding in muscle of patient with myopathy may change thinking on inheritance, say authors

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Recombination occurs in human mitochondrial DNA, says a team from the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, in a “proof of concept” paper in Science this week that they say overturns current dogma of maternal inheritance and non-recombination.

Investigating the basis for a mitchondrial myopathy in a patient described in 2002, members of Kraytsberg's group had discovered that his muscle contained about 90% paternal mtDNA carrying a detrimental mutation responsible for the disease, Khrapko told The Scientist by email.

Using a restriction enzyme recognizing only paternal sequence, and single-molecule polymerase chain reaction (PCR) to amplify it, 33 out of 450 PCR clones from the subject's muscle tissue were found to contain both maternal and paternal sequence. Several recombinants contained more than one breakpoint—segments that join polymorphisms of different (paternal/maternal) descent—and three breakpoint hotspots were described as “highly significant.”

“The relevance of our results to evolution studies ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Cathy Holding

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours