Modeling with model organisms

Modeling with model organisms Eye of Science / Photo Researchers, Inc Fruit fly genetics may help us understand how organisms can - or can't - adapt to climate change. By Andrea Gawrylewski Related Articles: 1 Hoffman's team reported that on the East Coast of Australia, the classical latitudinal genetic clines of Drosophila have shifted over the past 20 years an equivalent of 4 degrees latitude (some 400 km), which means that genetic clines are now found in f

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

By Andrea Gawrylewski

1 Hoffman's team reported that on the East Coast of Australia, the classical latitudinal genetic clines of Drosophila have shifted over the past 20 years an equivalent of 4 degrees latitude (some 400 km), which means that genetic clines are now found in flies 400 kilometers away from where they were 20 years ago.

The researchers focused their analysis on the alcohol dehydrogenase (Adh) locus, since the Adh gene has been correlated with natural variation due to temperature, rainfall, and humidity changes. In addition to tracking the gene's presence in different populations, "we're basically trying to track down what the Adh does," says Hoffman. "It now is a marker for temperature change, and shifts as temperature shifts." The Adh gene does have an impact on phenotype; it has been linked, for instance, to body size. "We've been trying to track down precisely how selection acts on that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Andrea Gawrylewski

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo