Molecular Biology

Peter H. Seeburg (Center for Molecular Biology, University of Heidelberg): "In our brain, nerve cells communicate by chemical transmission at specialized structures termed synapses. Most excitatory synapses use the neurotransmitter L-glutamate, which activates specific receptor channels in the postsynaptic membrane. Molecularly and functionally different glutamate-activated channels are expressed by the brain, presumably tailored t

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Peter H. Seeburg (Center for Molecular Biology, University of Heidelberg): "In our brain, nerve cells communicate by chemical transmission at specialized structures termed synapses. Most excitatory synapses use the neurotransmitter L-glutamate, which activates specific receptor channels in the postsynaptic membrane. Molecularly and functionally different glutamate-activated channels are expressed by the brain, presumably tailored to the requirements of the particular synapses carrying them. The N-methyl-D-aspartate (NMDA) receptor is one of these channels and is a major mediator of excitatory neurotransmission. Its properties are high permeability for Ca2+ and slow gating kinetics. Moreover, this receptor channel is blocked by extracellular Mg2+ ions.

"The strength of this block depends on the membrane potential. Around the cell's resting potential the block is in place; upon excitation and, hence, the neuron depolarization of the cell's membrane, the block is released and the channel activated by glutamate can flux Ca2+ ions. Ca2+ ions entering the cell ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies