Molecular Biology

C.K. Glass, S.M. Lipkin, O.V. Devary, M.G. Rosenfeld, "Positive and negative regulation of gene transcription by a retinoic acid-thyroid hormone receptor heterodimer," Cell, 59, 697-708, 17 November 1989. Christopher K. Glass (School of Medicine, University of California, San Diego, La Jolla): "Retinoic acid receptors appear to exert profound effects on vertebrate development by binding to target genes and altering the rates at which they are transcribed in response to retinoic acid. Because t


Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

C.K. Glass, S.M. Lipkin, O.V. Devary, M.G. Rosenfeld, "Positive and negative regulation of gene transcription by a retinoic acid-thyroid hormone receptor heterodimer," Cell, 59, 697-708, 17 November 1989.

Christopher K. Glass (School of Medicine, University of California, San Diego, La Jolla): "Retinoic acid receptors appear to exert profound effects on vertebrate development by binding to target genes and altering the rates at which they are transcribed in response to retinoic acid. Because the effects of retinoic acid are strikingly different in, for example, the limb versus the central nervous system, retinoic acid receptors must be capable of recognizing different target genes in different cell types.

"What mechanisms might regulate target gene selection? In this paper, we present evidence that the DNA binding and transcriptional activation properties of the retinoic acid receptor are modified by its ability to form a heterodimer with a closely related transcription factor, the thyroid hormone receptor. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio