More hope for genetic fix for HIV

Genetically modifying the stem cells of HIV patients may one day prove to be an effective, one-time therapy against the hard-to-kill virus, according to the results of a proof-of-principle trial published this week in Science Translational Medicine. Human Immunodeficiency VirusImage: Wikimedia commons, NIAIDIn contrast to the widely used highly active antiretroviral therapy (HAART), which patients must continue for their entire lives to control the virus, such a genetic treatment has the potent

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share
Genetically modifying the stem cells of HIV patients may one day prove to be an effective, one-time therapy against the hard-to-kill virus, according to the results of a proof-of-principle trial published this week in Science Translational Medicine.
Human Immunodeficiency Virus
Image: Wikimedia commons,
NIAID
In contrast to the widely used highly active antiretroviral therapy (HAART), which patients must continue for their entire lives to control the virus, such a genetic treatment has the potential to be "a single administration therapy," said bioengineer linkurl:David Schaffer;http://www.cchem.berkeley.edu/schaffer/ of the University of California at Berkeley, who was not involved in the trial, "where you introduce [a gene] into somebody's cells, and it stays there the rest of their lives. [That] has the potential to be a major plus," eliminating many of the toxic effects and financial costs of HAART. Because of these potential advantages, gene therapy -- the integration of new genetic material into a patient's genome -- has been proposed as a treatment for HIV. In past clinical trials, however, the new genetic material has failed to persist more than 8 months or a year. But taking advantage of a golden opportunity in which a handful of HIV patients had to undergo bone marrow transplants, molecular geneticist linkurl:John Rossi;http://www.cityofhope.org/directory/people/rossi-john/Pages/default.aspx of the City of Hope cancer center in California and his colleagues introduced three different therapeutic genes into patients' blood stem cells, then found evidence of those genetic elements in the blood up to 24 months later. "It showed us that you can introduce genes into somebody's blood cells, and it can stay around for years," said Schaffer, who wrote a perspective about the paper. "That's a major finding," Rossi added. While the number of cells expressing those genes was too low to provide any therapeutic benefit, it's "proof of principle" that gene therapy may provide long-term HIV treatment, he said. These results come in the wake of a recent report on the miraculous "Berlin patient," who appeared to be cured of HIV after receiving a bone marrow transplant as a treatment for leukemia from an individual with a mutation in the CCR5 gene, which codes for a coreceptor used by HIV to enter cells. Although "we don't really know what resulted in the 'cure' that that patient had," said immunologist linkurl:Carl June;http://www.med.upenn.edu/apps/faculty/index.php/g275/p2328 of the University of Pennsylvania School of Medicine, who did not participate in the study, it is a "really intriguing" idea that the CCR5 mutation could have played a role in preventing the virus from coming back. Finding marrow donors that are a match to HIV patients and have such a mutation, however, is not easy, he added. But a clever twist -- manipulating patients' own cells to carry such therapeutic mutations -- "is going to, in principle, allow that to happen." The trial patients had contracted AIDS-related lymphoma, and were thus in need of a marrow transplant -- in this case, from themselves. Blood stem cells were extracted from the patients' bone marrow, then reinjected into their bodies after they had undergone chemotherapy to destroy the malignant cell population. Before the cells were reinjected, however, the researchers inserted three therapeutic genes, including one that targets CCR5, into some of the cells that rendered them HIV-resistant. "The idea was that any single agent that you put as an antiviral agent is probably not going to be effective [because the] virus would mutate around [it]," Rossi said, "but the combination of all three would make it very difficult for the virus to escape." In addition to demonstrating the long-term expression of these genetic elements, the researchers found no evidence of adverse effects associated with the manipulation. The next step is to determine how many blood cells must be genetically modified in order to truly beat back HIV, said hematologist Gero Hütter of linkurl:Charité University Medicine Berlin;http://www.charite.de/hno-cbf/english/e-index.htm in Germany, who co-authored linkurl:The New England Journal of Medicine article;http://content.nejm.org/cgi/content/abstract/360/7/692 about the Berlin patient, "but today it's not clear how high this proportion should be." Indeed, "determining that's going to be really tricky," Rossi said. "It may vary from individual to individual [and] we don't have animal data that would suggest" an answer. But they're working on it, he said, using humanized mouse models as well as non-human primates. Eventually, he said, if done right, a successful gene therapy treatment "could eliminate the daily need for antiretroviral therapy."
**__Related stories:__***linkurl:Stem Cells and Gene Therapy;http://www.the-scientist.com/article/display/53518/
[September 2007]*linkurl:Lentiviral vectors appear safe for gene therapy;http://www.the-scientist.com/news/display/33781/
[7th November 2006]*linkurl:HIV gene therapy;http://www.the-scientist.com/article/display/20974/
[31 December 2002]
Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo