NCI Team Probes Chromosomal Architecture

NCI Team Probes Chromosomal ArchitectureFigure 1TECH WATCH Though most cells in an organism contain the identical genome sequence, the same cannot be said for the genome's three-dimensional organization. Using high-resolution microscopy and a technique called chromosome painting, Tom Misteli, a cell biologist at the National Cancer Institute, and colleagues examined six chromosomes in eight mouse tissue types and found that chromosomes cluster differently in each tissue. While this could indicat

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

TECH WATCH Though most cells in an organism contain the identical genome sequence, the same cannot be said for the genome's three-dimensional organization. Using high-resolution microscopy and a technique called chromosome painting, Tom Misteli, a cell biologist at the National Cancer Institute, and colleagues examined six chromosomes in eight mouse tissue types and found that chromosomes cluster differently in each tissue. While this could indicate that the genome's spatial organization affects gene expression, "there is virtually no evidence for this," says Misteli.

Instead, genome organization correlates with chromosomal abnormalities. Every cancerous lymphocyte Misteli's team examined contained translocations among chromosomes 12, 14, and 15. In normal primary lymphocytes, these chromosomes physically cluster, indicating, says Misteli, that the "probability of two chromosomes undergoing translocation is directly related to their spatial proximity."

As not all cells in a tissue are exactly alike, the team examined several hundred nuclei from each tissue type and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH