Nerve Graft Heals Paralysis in Rats

A peripheral nerve graft and treatment with an enzyme blocker restored breathing in partially paralyzed rats.

Written byTia Ghose
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Structures responsible for synaptic stabilization in the spinal cord, 5 months after treatmentNATURE, W. ALILAIN, J. SILVER

A peripheral nerve graft and treatment with an enzyme blocker restored breathing in partially paralyzed rats. The finding, published today (July 13) in Nature, suggests that a similar technique could one day be used to treat quadriplegics, who usually need artificial respirators to breathe.

“This is the first study that has shown that after a cervical spinal cord injury you can improve breathing function from this paralyzed muscle by combining these two therapies,” said Wayne State Medical Center neuroscientist Harry Goshgarian, who was not involved in the study. The results also suggest that mixing the pair with additional treatments, such as electrical stimulation or other drugs, might bring even further improvement, he said.

For over a century, researchers have tried grafting long segments of nerve ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH