New Arrays Open 'Junk DNA' to Exploration

Microarrays present researchers with something of a catch-22: In order to find something, you have to know what you're looking for.

Written byLissa Harris
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Microarrays present researchers with something of a catch-22: In order to find something, you have to know what you're looking for. If you're looking for new functional elements, your microarray needs to contain probes designed to target them. With many transcribed regions, protein-binding sites, and even genes still missing from genome annotations, however, even so-called "whole-genome" arrays with millions of features are likely to miss critical sequences.

But that is changing, thanks to rapid advances in the density of probes that can be packed into a single chip. In recent years, interest in hitherto-unexplored regions of DNA derided as "junk" has spurred the development of a new class of microarrays called "tiling arrays," in which probes are not designed to target known genes or promoters, but simply laid down at regular intervals along the length of the genome.

"It's much more unbiased. if you tile across a whole genome or ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH