New Instrument Boosts Capability Of Scanning Electron Microscopy

With the scanning electron microscope (SEM), scientists in a range of fields—from biology to materials science to microelectronics—can analyze the surface of objects with a resolution approaching molecular dimensions. Although conceptually developed in the 1940s, the SEM was not put into practical use until the 1960s. Improvements in SEM technology continue with the introduction this year of a device that can image unprepared specimens without contaminating the microscope or charg

Written byRichard Sheridan
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

With the scanning electron microscope (SEM), scientists in a range of fields—from biology to materials science to microelectronics—can analyze the surface of objects with a resolution approaching molecular dimensions. Although conceptually developed in the 1940s, the SEM was not put into practical use until the 1960s. Improvements in SEM technology continue with the introduction this year of a device that can image unprepared specimens without contaminating the microscope or charging or degrading the specimen.

Using a scanning electron beam of extremely small diameter, the SEM generates low-energy, secondary electrons in the upper 100 A of the specimen. These secondary electrons are bent and collected by a detection system that is scanned in synchronization with a cathode ray tube (CRT). The strength of the detected signal determines the CRT brightness, thereby producing an image of the specimen.

Specimen detail can be examined with a resolution as low as 20 A and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform