News Notes

Mount Sinai School of Medicine, in collaboration with international researchers, recently announced one of the first studies using the completed sequence of a human chromosome to localize, identify, and explain the function of a disease-causing gene. According to John A. Martignetti, of the departments of human genetics and pediatrics, Mount Sinai Medical School, and one of the project's researchers, working with a 112-plus member Italian family with the inherited bleeding disorder known as May-

Written byKate Devine
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Mount Sinai School of Medicine, in collaboration with international researchers, recently announced one of the first studies using the completed sequence of a human chromosome to localize, identify, and explain the function of a disease-causing gene. According to John A. Martignetti, of the departments of human genetics and pediatrics, Mount Sinai Medical School, and one of the project's researchers, working with a 112-plus member Italian family with the inherited bleeding disorder known as May-Hegglin anomaly (MHA) enabled localization of the disease-causing gene's location (J.A. Martignetti, et al., "The gene for May-Hegglin anomaly localizes to a <1-Mb region on chromosome 22q12.3-13.1," American Journal of Human Genetics, 66:1449-54, March 2000). The gene is on chromosome 22, the first in the human genome to be sequenced. Martignetti, Karen Heath, a postdoctoral fellow, and three groups of Italian colleagues then focused on two other similar blood disorders, Fechtner syndrome (FTNS), and Sebastian syndrome (SBS), ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies