How Neurons in a Dish Learned to Play “Pong”

The DishBrain system can send and receive electrophysiological signals to and from living neurons, training the cells to accomplish a task.

Written byDan Robitzski
| 5 min read
Microscope image of interconnected neurons, which appear as colorful starbursts of light.
Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

A longstanding goal of artificial intelligence research is to develop artificial general intelligence—that is, the sort of conscious or humanlike AI seen in science fiction. Engineers frequently pursue this “AGI” by trying to develop algorithms or AI architectures based on the human brain’s ability to learn and integrate information, and to piece together context in such a way that it can truly understand something. But in a new approach to recreating learning and intelligence, a system called the DishBrain instead merges living brain tissue with technology.

DishBrain, a product of the Australian biotech company Cortical Labs, is a platform that can teach living neurons to perform tasks by stimulating them with electrophysiological signals, then reading the resulting activity in the cells. In new work published today (October 12) in Neuron, researchers showed that cultures of mouse or human neurons were capable of learning to play the classic 1972 Atari video ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • black and white image of young man in sunglasses with trees in background

    Dan is an award-winning journalist based in Los Angeles who joined The Scientist as a reporter and editor in 2021. Ironically, Dan’s undergraduate degree and brief career in neuroscience inspired him to write about research rather than conduct it, culminating in him earning a master’s degree in science journalism from New York University in 2017. In 2018, an Undark feature Dan and colleagues began at NYU on a questionable drug approval decision at the FDA won first place in the student category of the Association of Health Care Journalists' Awards for Excellence in Health Care Journalism. Now, Dan writes and edits stories on all aspects of the life sciences for the online news desk, and he oversees the “The Literature” and “Modus Operandi” sections of the monthly TS Digest and quarterly print magazine. Read more of his work at danrobitzski.com.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform