Researchers Train Goldfish to “Drive”

The Scientist spoke with cognitive neuroscientist Ronen Segev about how he taught goldfish to maneuver a moveable tank over land toward a visual target.

Written byChloe Tenn
| 6 min read
goldfish in tank
Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

Fish can navigate out of water, a study published on December 9 in the journal Behavioral Brain Research finds, suggesting that animal navigational abilities aren’t dependent on ecological context.

Previous studies have trained rats and dogs to operate vehicles, and in 2014, engineers at Ben-Gurion University of the Negev in Israel developed a “fish on wheels” interface that allows fish to control a robotic car over land—essentially, a clear tank on a four-wheel platform that moves according to the orientation and movements of the fish inside. Last month, the scientists implemented this technology to test whether goldfish (Carassius auratus) can perceive and understand a waterless environment and transfer their spatial representation and navigation skills to the terrestrial realm.

I am excited to share a new study led by Shachar Givon & @MatanSamina w/ Ohad Ben Shahar: Goldfish can learn to navigate a small robotic vehicle on land. We trained goldfish ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • young woman smiling

    Chloe Tenn is a graduate of North Carolina State University, where she studied neurobiology, English, and forensic science. Fascinated by the intersection of science and society, she has written for organizations such as NC Sea Grant and the Smithsonian. Chloe also works as a freelancer with AZoNetwork, where she ghostwrites content for biotechnology, pharmaceutical, food, energy, and environmental companies. She recently completed her MSc Science Communication from the University of Manchester, where she researched how online communication impacts disease stigma. You can check out more of her work here.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies