Young Brain Cells Silence Old Ones to Quash Anxiety

In adult mice, neurogenesis increases social confidence by suppressing the activity of mature neurons.

Written byRuth Williams
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

If youngsters told their elders to be quiet, stress levels would surely rise. But, when it comes to brain cells, it seems the opposite is true—silencing of old neurons by young ones appears to make an animal more stress resilient. A report today (June 27) in Nature shows that mice whose production of new hippocampal neurons was ramped up suffered less anxiety in a stressful social situation than their control counterparts, and this was thanks to an increased inhibition of mature hippocampal cells.

“It’s a very elegant paper showing how adult neurogenesis protects against chronic stress,” says neuroscientist Sandrine Thuret of King’s College London in the U.K. who was not involved in the research. It was known that the birth of new neurons in the hippocampus could prevent stress, “but we didn’t really know how,” she explains. “[The authors] show that the new neurons modulate the activity of mature neurons ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform