Zebrafish and Medaka Can Sense Magnetic Fields

Unlike in some animals, their sense of magnetoreception appears to be independent of blue light.

Written byShawna Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

zebrafish, medaka, and compassWESTMEYER/HELMHOLTZ ZENTRUM MÜNCHENHumans like to fancy ourselves advanced, but there’s at least one area where cockroaches, and even nematodes, seem to have us beat: magnetoreception, the ability to sense variations in magnetic fields. To add insult to injury, our best human minds haven’t yet been able to answer basic questions about how the sense—also shared by some amphibians, fish, birds, and mammals—works.

Joining the list now are zebrafish and medaka, as researchers reported in Nature Communications last month (February 23). Unlike in some animals, magnetoreception in the fish doesn’t require light to work.

The study is “a promising beginning,” writes Roswitha Wiltschko, a researcher at Goethe University Frankfurt who has studied magnetoreception in birds, in an email to The Scientist. “[T]o demonstrate [sensitivity to magnetic direction] in two species whose genetics are known is novel, and this might form a basis for future investigations.”

Animals as diverse as lobsters and pigeons are thought to use variations in Earth’s magnetic fields to orient themselves. One idea for how the sense might work is that magnetic fields could affect light-sensitive chemical reactions, possibly in structures in the retina known ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor’s degree in biochemistry from Colorado College and a graduate certificate in science communication from the University of California, Santa Cruz. Previously, she worked as a freelance editor and writer, and in the communications offices of several academic research institutions. As news director, Shawna assigned and edited news, opinion, and in-depth feature articles for the website on all aspects of the life sciences. She is based in central Washington State, and is a member of the Northwest Science Writers Association and the National Association of Science Writers.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH