Next Generation: Strong Surgical Glue on Demand

Researchers create a nature-inspired nontoxic polymer that, when activated by light, becomes tacky and can seal ruptured, torn blood vessels and patch up holes in a pig heart.

Written byAnna Azvolinsky
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

The application of glue to a vessel defect.RANDAL MCKENZIE (MCKENZIE ILLUSTRATIONS)The material: Inspired by the gooey secretions made by slugs, snails, and worms, and realizing an opportunity to improve how blood vessels and congenital heart defects are repaired during surgery, researchers in Boston have developed and tested a new type of surgical glue. The material has all the right properties: it sticks well to wet tissue, repels blood and water, and is strong enough to bind major blood vessels even when under the pressure of flowing blood. The team, led by Jeffrey Karp, a bioengineer at the Brigham and Women's Hospital in Boston, Massachusetts, and Boston Children’s Hospital cardiac surgeon Pedro del Nido, has so far shown that the glue can seal the carotid artery and stick to the heart wall during surgery in pigs.

“We tested the adhesive in probably the most demanding and dynamic environment in the body—the heart—and found that it works. This is a very high bar,” said del Nido. “Something like this could revolutionize the way surgery is done, especially on the delicate tissue of newborns and children.”

What’s new: Contractions of the heart and constant blood flow make reconnecting blood vessels, attaching devices, and sealing holes in the heart during surgery difficult. Sutures and staples are routinely used, but are not elastic and can exert damaging pressure on tissue. Yet most currently available medical-grade superglues are toxic—triggering an inflammatory response—and buckle under the high-pressure force of blood flowing in larger vessels.

This new material “is able to resist physiologic blood pressures while maintaining some ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD

Products

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies