Opinion: How to prevent fraud

Thoughts on how to catch scientific misconduct early from a researcher recently convicted of the offense

Written bySuresh Radhakrishnan
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share
Misconduct in science is increasing at an alarming rate, and is an issue that needs to be addressed. The constantly evolving technology, the arrival of online-only journals, and other significant scientific developments warrant a reconsideration of the existing procedures in place to prevent fraud and the development of novel verification techniques. Here, I propose four compelling approaches to nip this problem in the bud and limit the repercussions of linkurl:scientific misconduct.;http://www.the-scientist.com/news/display/57557/I: Funding for all ages The number of PhDs in biology has linkurl:increased exponentially;http://www.the-scientist.com/article/home/24540/ over the past several years. Concurrently, the average age of principal investigators (PIs) when they obtain their first R01 research grant from the National Institutes of Health (NIH) has been rising, likely a result of the fact that all the PIs, regardless of stature, are competing for the same funding source. But established investigators have a clear advantage. Indeed, the NIH has identified this issue, and just last year instituted a policy to give Early Stage Investigators (those applicants within less than 10 years of experience) linkurl:special consideration;http://www.the-scientist.com/article/display/55930/ during grant review.
Wikimedia commons,
Smithsonian Institution Archives
Despite this distinct advantage provided to junior PIs, no such effort has been made for mid-stage investigators, who are at a similar disadvantage to more senior researchers. Furthermore, even for junior PIs, I believe the NIH's effort is offset by the dramatic rise in applicants in this pool and the lack of a parallel increase in the total number of R01 grants. This increasingly competitive funding environment can result in undue pressure on less established PIs to publish in high impact journals, which can encourage falsification. A more effective way to counter the inherent unfairness in the funding process might be to divide funding into three groups according to career stage, such that PIs will be competing for funding against other scientists with similar experience levels. Such leveling of the competition could help reduce the pressure on younger PIs to falsify data.II: Third party data verification Experimental design, performance and analysis are getting more sophisticated, leading to an increasing pace of scientific discovery. However, those achievements are not matched by advancements in data-verification processes. It takes a long time to conclude a misconduct investigation, which minimizes the roles of agencies such as the Research Integrity Office at individual institutions and the Office of Research Integrity at the NIH. Furthermore, irrevocable damage has been already done before the dawn of a formal investigation.Invoking an independent agency for data verification during the preliminary stages of a project could aid in generating stronger manuscripts, grant applications, and clinical trials while minimizing the occurrence of research misconduct. I propose that a third party facility, funded by groups such as the NIH, could provide such a service in an efficient and effective manner. Reagents could be submitted to the agency in a blinded fashion, and time spent on this process can be minimized by encouraging simplicity in experimental designs. For more complex experiments, such as those involving special animal models and biophysical studies, laboratories approved by their institutional Research Integrity Office can provide support, either by verifying the data themselves, or hosting a scientist from the central facility.To ensure the integrity of funded research, funding agencies should insist upon the verification of preliminary data included in the grant to be completed before funding but after positive review. Journals can similarly choose to conditionally accept manuscripts prior to data verification, but withhold publication until the results have been validated.III: Strong postdoctoral forums Despite the rise in NIH applicants, the number of postdoctoral organizations has not increased significantly over the past decade. As a result, the supply-to-demand ratio of linkurl:postdoctoral fellows;http://www.the-scientist.com/bptw/postdoc/ is skewed against fellows, thereby making them dispensable for a laboratory. This can lead to self-inflicted pressure on the fellows for data delivery to help the lab obtain funding, as well as hesitancy to report any suspected unethical actions of their PIs. To address these and other issues, National Postdoctoral Association (NPA) was founded in 2003. Despite their strong commitment to the welfare of the fellows, consistently addressing grassroot issues at an institutional level can be a major challenge. Moreover, awareness about NPA among new fellows arriving at an institution is very low. (I discovered NPA's existence just last year, despite having been a fellow for the past decade.) Invoking stronger institutional postdoc associations can directly increase the overall awareness of new fellows about NPA and provide additional support within the institution. Socialization events hosted by institutional postdoc organizations, for example, can help relieve postdocs of prevailing undue stressors, and promote laboratory discussions, resulting in the prevention of data falsification either by the fellow (by increasing confidence and awareness of ethical science) or by the PI (by creating a whistleblower from an otherwise reluctant fellow). Furthermore, postdoc organizations could play a larger role in mediating cases of misconduct, granting fellows anonymity when they report such an occurrence, and relaying that information to the institutional Research Integrity Office for appropriate measures. IV: Objective manuscript review As the success of scientists depends largely on the number of manuscripts they publish, it can be extremely frustrating to have one's journal submissions rejected, particularly when the rejection does not appear to be scientifically justified -- an occurrence that is unfortunately not uncommon with the current peer review system. This, along with the enormous strain on researchers to publish the data rapidly, can potentially lead to compromises in the integrity of their research.Recently, commendable novel approaches have been adopted by some journals, including revealing the names of the reviewers or blinding the names of the authors, to increase objectivity in scientific publishing (see The Scientist's linkurl:recent feature;http://www.the-scientist.com/2010/8/1/36/1/ for a review). These approaches minimize prejudices while encouraging constructive criticism, which shall serve to increase the quality of the work and linkurl:reduce the occurrence of research misconduct.;http://www.the-scientist.com/article/display/55772/ Suresh Radhakrishnan worked at the Mayo Clinic in Rochester, Minn., as a senior research associate until he was linkurl:fired for misconduct;http://www.the-scientist.com/blog/display/57449/ in May 2010.
**__Related stories:__***linkurl:Opinion: Erase science's blacklist;http://www.the-scientist.com/news/display/57557/
[14th July 2007]*linkurl:10 retractions and counting;http://www.the-scientist.com/blog/display/57449/
[26th May 2010]*linkurl:Are we training too many scientists?;http://www.the-scientist.com/article/home/24540/
[September 2006]
Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform