Opinion: Statistical Misconceptions

Researchers must be wary of the common mistakes of correlation analysis when drawing conclusions about the nature of their data.

Written byVladica M. Veličković
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

WIKIMEDIA, SAM DAOUDStatistics are the basis of scientific data analysis, and with the flood of data coming from new genomics technologies, biostatistics has truly become an inseparable part of modern science. Nevertheless, a fundamental statistical technique—correlation analysis, which measures the relationship between two variables—is often employed incorrectly, leading to erroneous conclusions about the true nature of the relationship between the studied phenomena.

The primary task of correlation analysis is to test for a relationship, or agreement, between two variables of interest—say smoking and higher incidence of lung cancer. Furthermore, provided that the survey was carried out on a sufficiently large sample, a rough assessment of the degree of correlation between the observed phenomena, quantified as the linear correlation coefficient, can be performed.

This coefficient must then be interpreted and critically analyzed, as correlation analysis does not aim at explaining the nature of the quantitative agreement—in other words, the causal relationship between the two variables. In addition to assuming causality, researchers commonly fall victim to two other misconceptions: inferring the nature of the individual based on the group findings, and thinking that a correlation of zero implies independence. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH