Opinion: The Planet Needs More Plant Scientists

Academia is not producing sufficient PhDs in the plant sciences to solve the crop production challenges facing a rapidly growing population.

Written byAlan M. Jones
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

FLICKR, JOI ITOWhile the message is not new, the declaration of the flaws of the US biomedical research system by four prominent life scientists this spring captured everyone’s attention. Bruce Alberts, Marc Kirschner, Shirley Tilghman, and Harold Varmus wrote in PNAS of how “demands for research dollars grew much faster than the supply . . . [due to] perverse incentives [that] encourage grantee institutions to grow without making sufficient investments in their faculty and facilities.” Rather than devote money to faculty salaries, universities built infrastructure to house more self-paid researchers able to bring in more money via research grants, of which a large fraction was used as revenue (overhead) for the university. More labs required more students to fill them, leading to a dramatic rise of PhDs in the biomedical sciences, which then produced more researchers competing for dwindling grant dollars. In short, research institutions have no incentive to support individual faculty and instead have perverse incentives to encourage further research spending: more grants = more overhead = more buildings = more PIs = more PhDs in an increasingly out-of-control spiral. (See “PhDs in the U.S.”) This is not sustainable, and we are now experiencing the consequences, with the most despairing being the lack of adequate jobs for our postdocs and perceived insufficient funding for all of us.

PhDs in the U.S.: From 1982 to 2012, the total number of PhDs in the life sciences (blue) has grown dramatically. Most of these PhDs are in biological, biomedical, and health sciences (red), however; the number of PhDs in the agricultural and natural sciences (green) has remained flat over that same time period. The unsustainable rate of PhDs awarded per year in the biomedical sciences does not extrapolate to the rate of PhDs in other life sciences, however, especially the agricultural sciences, where the rate of PhDs per year has remained flat for decades. Since 1982, we have consistently trained only about 1,000 PhDs in applied agricultural and related sciences each year. And over the last decade, the U.S. has annually produced only 800 or so plant scientists working in applied agricultural science and only 100 with the skills for basic plant research. (See “Plant science stagnates.”) Given the global agricultural challenges we now face, this is a problem.

The Earth must support another 1 billion humans in the coming decade, and must do so with less arable land and in an unpredictable climate. This means we must find innovative ways to produce crops with higher yields and novel traits—a feat that will require the work of PhDs trained in agriculture and plant sciences. But at this point we are not producing enough plant scientists to lead us out of this Malthusian dilemma.

The US Coalition for a Sustainable Agricultural Workforce recently completed a confidential survey among agricultural biotech companies to ascertain near-term needs for hiring domestic agricultural scientists. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies