Outsmarting Influenza's Rapid Evolution

Twice yearly, World Health Organization health officials meet to strategize against influenza, a malady that kills at least 250,000 people each year. In a chess match of sorts, they work to predict their opponent's next move, in this case by modifying vaccines to compensate for changes in the critical viral antigen hemagglutinin, which triggers the host's long-term immune memory. It takes several months to manufacture and distribute flu vaccines in sufficient quantities to inoculate vulnerabl

Written byPhilip Hunter
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

Twice yearly, World Health Organization health officials meet to strategize against influenza, a malady that kills at least 250,000 people each year. In a chess match of sorts, they work to predict their opponent's next move, in this case by modifying vaccines to compensate for changes in the critical viral antigen hemagglutinin, which triggers the host's long-term immune memory. It takes several months to manufacture and distribute flu vaccines in sufficient quantities to inoculate vulnerable individuals before an epidemic occurs, making it necessary to anticipate critical antigenic changes well in advance. Until now, this prediction has been a qualitative rather than a quantitative process, performed by WHO's influ-enza committee in February and September.

These predictions have become much more accurate since molecular data for amino acid sequences of the influenza A and B viruses became available in the mid-1980s, but the vaccines still fail to confer adequate protection in a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies