Plant Immunity

How plants fight off pathogens

Written byAmanda B. Keener
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Plants have two basic immune pathways. First, a pattern recognition receptor (PRR) on the plant cell’s surface recognizes pathogen-associated molecular patterns (PAMPs) released by invaders—say, the flagellar proteins from pathogenic bacteria. This jump-starts signaling pathways inside the cell that spur the production of reactive oxygen species (ROS) and antimicrobial compounds, which are secreted to combat the pathogen. PAMP-triggered pathways can also lead to changes in gene expression and hormone levels.

But bacteria can interfere with PAMP-triggered immunity by injecting effector molecules into the plant cell. Intracellular plant protein complexes called nucleotide-binding domain, leucine-rich repeat receptors (NLRs) bind bacterial effectors and set off secondary immune cascades that boost the PAMP-triggered responses. NLR-binding can also lead to plant cell death, limiting the infection.

© THOM GRAVESPlant immune systems must integrate a diversity of factors to successfully fight off pathogens
without harming the plant. Defense-related changes in hormone signaling, for example, can
interfere with plant growth. Many species power down their immune systems at night, when
growing ramps up. Plant immunity also fluctuates with changes in temperature, humidity, and
light exposure, and is likely dependent on a plant’s microbiota below and above the soil.

© ISTOCK.COM/OKEA/TULPAHN

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform