Playing Up the Single Life

By Amy Maxmen Playing Up the Single Life Single-cell applications to help you explore the tiniest great unknown As researchers probe deeper into cell physiology, they are increasingly bumping into cells’ individual personalities. Identical genetic material and location, it seems, doesn’t prevent two cells from behaving differently, and in some cases this intercellular variation changes cell function and fate. Fluctuations within individual cells may

Written byAmy Maxmen
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

As researchers probe deeper into cell physiology, they are increasingly bumping into cells’ individual personalities. Identical genetic material and location, it seems, doesn’t prevent two cells from behaving differently, and in some cases this intercellular variation changes cell function and fate. Fluctuations within individual cells may even underlie cancer or neurological disease.

DNA microarrays, mainstays in assessing gene expression, aren’t sensitive enough to detect these individual-level differences, says Sunney Xie, a professor of chemistry and chemical biology at Harvard University and an early pioneer of single-cell techniques. But picking out RNAs or proteins present in low numbers within a single cell is easier said than done. And exploring forces such as tension and movement at a single-cell scale can be a Herculean task requiring collaborations between physicists, engineers, and biologists.

Here, The Scientist profiles researchers developing applications to measure activity within single cells with newfound precision.

DEVELOPER

Stephen Quake, Professor ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas