Proteins on the prowl

Defensive proteins kill bacteria invading mouse cells by delivering deadly sacs of antimicrobial chemicals

Written byMegan Scudellari
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share
Researchers have identified the function of an obscure but large family of proteins whose function in cellular immune responses had been unknown.
Fluorescent micrograph of Gbp1 (green) targeting mycobacteria (magenta rods) in interferon-activated macrophages (red, actin staining;
blue, nuclear staining)
Image courtesy of John MacMicking
Guanylate-binding proteins, Gbps for short, protect cells from pathogens that have snuck into a cell by activating cellular degradation machinery, according to a study published today (May 5) in linkurl:Science.;http://www.sciencemag.org/content/current Understanding how the proteins work could help spur the development of small drug molecules to activate a cell's own defenses against infection, a potential alternative to antibiotics."The function of the Gbps remained mysterious for a very long time despite the fact that they are produced in massive amounts upon infection," said linkurl:Sascha Martens,;http://www.mfpl.ac.at/index.php?cid=872 who studies autophagy at the Max F. Perutz Laboratories in Austria and was not involved in the research, in an email to The Scientist. The new findings "could be a breakthrough in the field of resistance to intracellular bacterial pathogens."Gbps are produced in abundance in response to type II interferon, a defense activation protein released by host cells in presence of pathogens. linkurl:John MacMicking;http://medicine.yale.edu/micropath/people/john_macmicking.profile and colleagues at the Yale University School of Medicine performed a loss of function screen on the 11 members of the Gbp family, individually silencing the RNA transcripts of the genes in mouse macrophages. "Now that we can target RNA, it allows us to discriminate between individual members of a closely related family," said MacMicking.The researchers found that four of the Gbps -- Gbp1, Gbp6, Gbp7, and Gbp10 -- conferred immunity to two bacteria: Listeria monocytogenes, responsible for food borne infection in humans, and Mycobacerium bovis, a close relative to the bacterium that causes tuberculosis. Engineering Gbp1-deficient mice, the team confirmed that animals lacking the Gbp1 gene were more susceptible to infection.Digging into the mechanism by which the proteins protect the cells, the researchers found that at least two of them, Gbp1 and Gbp7, deliver antimicrobial cargo such as toxic peptides to the bacteria in sac-like vesicles (see below video). Gbp1 also tags invading bacterial cells so that they are delivered to lysosomes and digested.
Microbiologist John MacMicking shows how specialized proteins
battle bacteria inside immune cells.
Video courtesy of Science and John MacMicking
The team conducted additional experiments in human cells and found that human orthologs of the Gbp proteins also help fight infection. "It looks like there's conservation across both human and mouse, and we anticipate there will be conservation across other vertebrate species as well," said MacMicking.Understanding how the cell's internal defensive machinery works could help scientists develop small molecule drugs that imitate its ability to fight and kill bacteria. "We're running out of new antibiotics," said MacMicking. "One idea is to eventually generate drugs that actually mimic host processes that are normally very effective at clearing bacteria." Kim, B.H., et al., "A family of IFN-gamma inducible 65-kD GTPases protects against bacterial infection," Science, 332:717-21, 2011.
**__Related stories:__***linkurl:Cellular chaos fights infection;http://www.the-scientist.com/news/display/57982/
[10th February 2011] *linkurl:RNA Arms Race;http://www.the-scientist.com/2010/8/1/51/1/
[1st August 2010] *linkurl:Antiviral response promotes bacterial infection;http://www.the-scientist.com/news/display/25036/
[10th October 2006]
Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
An image of a DNA sequencing spectrum with a radial blur filter applied.

A Comprehensive Guide to Next-Generation Sequencing

Integra Logo
Golden geometric pattern on a blue background, symbolizing the precision, consistency, and technique essential to effective pipetting.

Best Practices for Precise Pipetting

Integra Logo
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel