Reducing Malaria to its Constituent Parts

FIRST BITE:Courtesy of CDC/Jim GathanyFemale Anopheles gambiae mosquito feeding.A decade ago, scientists around the world recognized that despite malaria's tremendous disease burden, research on the topic had stagnated. With funding at low levels, robust molecular biology tools numbered few. Today, genome sequences for Plasmodium falciparum, the parasite causing malaria, and for Anopheles gambiae, the mosquito that spreads it, have already fundamentally changed the research landscape. Plasmodium

| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Courtesy of CDC/Jim Gathany

Female Anopheles gambiae mosquito feeding.

A decade ago, scientists around the world recognized that despite malaria's tremendous disease burden, research on the topic had stagnated. With funding at low levels, robust molecular biology tools numbered few. Today, genome sequences for Plasmodium falciparum, the parasite causing malaria, and for Anopheles gambiae, the mosquito that spreads it, have already fundamentally changed the research landscape. Plasmodium is now the subject of more grant applications than any other parasite, according to Michael Gottlieb, chief of the parasitology and international programs branch at the National Institute of Allergy and Infectious Diseases, a funder for both genome projects. The Anophleles data have been slower to influence, Gottlieb says: "It's taking more time for it to have the same level of impact, but it's coming."

The P. falciparum genome-sequencing project, started in 1996, was burdened with technological hurdles and political issues. A draft ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Eugene Russo

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo