Researchers Study Rodent Songs They Can’t Hear

Mice and rats produce ultrasonic signals to attract mates.

Written byJoshua A. Krisch
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

© JNE VALOKUVAUS/SHUTTERSTOCK.COM

In 1877, Joseph Sidebotham, a Manchester cotton baron fascinated by natural history, published an informal correspondence in Nature describing how a mouse had serenaded him from the top of a woodpile. In the letter, Sidebotham notes that his son suggested that perhaps all mice can sing, but at frequencies that the human ear cannot hear, and that the audible mouse vocalist was an oddity (what today we would call a mutant).

Sidebotham dismissed his son’s idea, but it turned out to be right: mice do sing. In addition to the audible squeaks for which they are known, the rodents produce more-elaborate vocalizations reminiscent of birdsong, but at a frequency far beyond the limits of human hearing. In 2005, Timothy Holy, a neuroscientist at Washington University in St. Louis, and colleagues defined these ultrasonic vocalizations as songs using measures similar to those that researchers employ to distinguish songs from isolated calls in birds (PLOS Biol, 3:e386). “It was really when I wrote an algorithm that allowed me to shift the pitch of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

March 2017

Music

The production and neural processing of musical sounds, from birdsong to human symphonies

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD

Products

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies