Restructuring Human Variation

Investigators put deletions on the map of human genetic variation.

Written byElie Dolgin
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Following the sequencing of the human genome in 2001, genetic variation between people was largely pinned on simple sequence differences known as single-nucleotide polymorphisms, or SNPs. This led to large-scale SNP-mapping ventures, such as the International HapMap Project, to identify regions of the genome underlying phenotypic variation and disease susceptibility. But SNPs are only part of the picture. Recently, scientists are realizing that structural differences - including deletions, duplications, inversions, and copy-number variants - encompass millions of bases of DNA, and are at least as important as SNPs in contributing to genomic variation in humans.

In 2004, two landmark studies showed that gains or losses of large swaths of DNA - known as copy number variants (CNVs) - are common features of the human genome. These first genome-wide studies identified a few hundred CNVs, but because of the techniques used, researchers could detect only large-scale differences of roughly 50 kb ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies