Revealing Images

There seems to be no end to the stream of optical technologies hitting the market. Cambridge Research & Instrumentation (CRI) Inc., of Woburn, Mass., has developed CellView and SpindleView imaging systems to apply the company's LC-PolScope™ technology1,2 to the subcellular organization of living cells without stains or fluorescent labels. Many subcellular structures are oriented polymers that are spatially organized, or anisotropic. This anisotropy causes the speed of light to v

Written byJorge Cortese
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

There seems to be no end to the stream of optical technologies hitting the market. Cambridge Research & Instrumentation (CRI) Inc., of Woburn, Mass., has developed CellView and SpindleView imaging systems to apply the company's LC-PolScope technology1,2 to the subcellular organization of living cells without stains or fluorescent labels.

Many subcellular structures are oriented polymers that are spatially organized, or anisotropic. This anisotropy causes the speed of light to vary in different spatial directions within these biomaterials, giving rise to two distinct refractive indices. Using these refraction indices, the relative orientation and even the number of filaments of a polymer may be estimated (based on thickness effects).

CRI Inc.'s LC-PolScope systems convert a light microscope into a quantitative retardance imager. Paired electro-optical liquid crystal retarders replace cumbersome mechanical polarizers and generate orientation-independent polarization images (360° view), eliminating moving parts and giving images in perfect register. Only a few seconds are ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH