Rewriting E. coli’s Genetic Code

Researchers use directed evolution to create a bacterial strain that substitutes a synthetic base for thymine.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

E. coli cells that use synthetic base 5-chlorouracile in place of thymineIG-CEA

Using a new automated system for placing strong selective pressure on cultured bacteria, a team of European scientists has evolved a new strain of E. coli that almost completely lacks thymine—one of the four bases of the DNA alphabet. Instead, the bacteria contain the structurally similar synthetic base, 5-chlorouracil.

The results, published in a recent issue of Angewandte Chemie International Edition, suggest a new way for incorporating unnatural elements into living organisms—a technical challenge in synthetic biology that has yet to see industrial applications.

“They have shown that they have a good control of the evolution process,” said molecular geneticist George Church of Harvard University, who was not involved in the research. “Darwin would be very proud!”

Organisms evolve as a result of randomly-occurring mutations ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Sabine Louët

    This person does not yet have a bio.
Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Artificial Inc. Logo

Artificial Inc. proof-of-concept data demonstrates platform capabilities with NVIDIA’s BioNeMo

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

Scientist holding a blood sample tube labeled Mycoplasma test in front of many other tubes containing patient samples

Accelerating Mycoplasma Testing for Targeted Therapy Development