Riding the Microfluidic Wave

Photo: Courtesy of Eksigent Technologies Eksigent Technologies' electrokinetic high-flow-rate EKPump These days, miniaturization is king. In the emerging field of microfluidics, routine laboratory analyses are shrinking to the microliter, nanoliter, or even picoliter level. The result: a vast reduction in sample and reagent consumption, decreased waste generation, dramatically faster operation, and an incredible potential for the automation and massive, parallel processing of laboratory

| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

These days, miniaturization is king. In the emerging field of microfluidics, routine laboratory analyses are shrinking to the microliter, nanoliter, or even picoliter level. The result: a vast reduction in sample and reagent consumption, decreased waste generation, dramatically faster operation, and an incredible potential for the automation and massive, parallel processing of laboratory procedures. Best of all, these benefits come bundled with greater resolution in separations, exquisite control over mixing, and the capacity for expediting chemical reactions within highly controlled microenvironments.

Microfluidic approaches lend themselves to a versatile, cost-efficient model of operation, in which a single, central instrument processes numerous disposable, application-specific, microfluidic devices. The marketplace already supports a diverse array of applications, and researchers and microfluidics engineers alike are keen to miniaturize and integrate many more. To develop these systems, companies are sampling from a growing palate of microfluidic technologies, materials, and fluid-control strategies.

Advances in this field will ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Deborah Fitzgerald

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours