RNAi: Five Tips to Better Silencing

Anxious to get going with RNAi? These tips will make your next knockdown a knockout

| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

Thanks to RNA interference it's easier than ever to perform genetic knockouts in cultured cells and live animals. The idea is simple enough: deliver a short interfering RNA (siRNA) for the desired mRNA, wait a few days, and see what happens. In theory, the siRNAs (short double-stranded RNAs homologous to a region of an mRNA) will program the RNA-induced silencing complex to target the desired transcript for degradation.

In practice, however, it takes time, and a lot of optimization, to get the process working. This is less true for researchers whose target genes correspond to precloned interference constructs such as those available from Cold Spring Harbor Laboratory (http://codex.cshl.edu) or commercial vendors such as Sigma-Aldrich, Open Biosystems, and System Biosciences. You might also get lucky and be able to purchase ready-to-use siRNAs from Ambion, Qiagen, or Dharmacon. But suppose you need to go from gene to gene knockout completely from scratch? ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Aileen Constans

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo