Run, Don't Walk

System speeds up the pace of sequencing Schematic of New England Biolab's Genome Priming System Transposons are nothing new to molecular biologists--they have been used since the early 1970s for creating mutations, as well as for moving sequences from place to place in vivo. In the Genome Priming System (GPS™), New England BioLabs (NEB) has developed a novel, in vitro application of transposons for the production of sequencing templates. GPS replaces primer walking, nested deletions, an

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

System speeds up the pace of sequencing


Schematic of New England Biolab's Genome Priming System
Transposons are nothing new to molecular biologists--they have been used since the early 1970s for creating mutations, as well as for moving sequences from place to place in vivo. In the Genome Priming System (GPS), New England BioLabs (NEB) has developed a novel, in vitro application of transposons for the production of sequencing templates. GPS replaces primer walking, nested deletions, and random subcloning, all of which can be tedious and time consuming, through the random insertion of a sequencing primer site--bearing transposon into a target DNA.

Transposition can be a complicated process, requiring as many as four proteins and often resulting in complex products. But recently, Nancy Craig and Anne Stellwagen1,2 from Johns Hopkins University isolated a mutant that will transpose in vitro through a simple procedure to yield simple products. NEB's senior research scientist, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Laura Defrancesco

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo