SARS, Malaria, and the Microarray

It was the first Saturday of Spring 2003, and Joe DeRisi and his postdoc David Wang were staked out at either end of the University of California, San Francisco's Genentech Hall waiting for the FedEx truck.

Written byKaren Hopkin
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

Photo: Felix Aburto

It was the first Saturday of Spring 2003, and Joe DeRisi and his postdoc David Wang were staked out at either end of the University of California, San Francisco's Genentech Hall waiting for the FedEx truck. DeRisi, had recently moved his lab to the university's new Mission Bay campus. With the lot still surrounded by chain link fencing and the loading dock closed for the weekend, DeRisi and Wang feared that the FedEx driver might get discouraged and depart without delivering their package: samples of genetic material extracted from the causative agent of SARS.

At the time, SARS was killing patients and healthcare workers in Southeast Asia. Diagnostic tests had until that point failed to identify the culprit. DeRisi thought he could help. Over the previous year, DeRisi, Wang, HHMI investigator Don Ganem, and their UCSF colleagues had engineered a microarray that sported sequences from all known ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH