Second Thoughts about Peppered Moths

Every student of biological evolution learns about peppered moths. During the Industrial Revolution, dark ("melanic") forms of this moth, Biston betularia, became much more common than light ("typical") forms, though the proportion of melanics declined after the passage of pollution-control legislation. When experiments in the 1950s pointed to cryptic coloration and differential bird predation as its cause, "industrial melanism" became the classical story of evolution by natural selection. Subse

Written byJonathan Wells
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

In 1896, J.W. Tutt noted that typicals were well camouflaged against the light-colored lichens that grow on tree trunks in unpolluted woodlands; but in woodlands where industrial pollution has killed the lichens, exposing the bark and darkening the tree trunks, melanics are better camouflaged. Since conspicuous moths are more likely to be eaten by predatory birds, Tutt attributed the increase in the proportion of melanic forms to natural selection.

In the 1950s, Bernard Kettlewell tested the idea experimentally by marking several hundred peppered moths (typicals as well as melanics) and releasing them onto tree trunks in a polluted woodland near Birmingham, England. Kettlewell observed through binoculars that melanics seemed less conspicuous than typicals, and that birds took conspicuous moths more readily than inconspicuous ones. That night he recaptured 27.5 percent of the melanics, but only 13.0 percent of the typicals, suggesting that a much higher proportion of melanics had survived ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research