Secondary Endosymbiosis Exposed

Photo: Nils Kroger, Regensburg UniversityLast summer's publication of the first diatom genome provided insight into the workings of a tiny organism with huge potential for environmental, industrial, and research applications.1 A growing appreciation of the sequence, however, has begun to divulge one of nature's wilder and most productive experiments.Diatoms, a diverse division of one-celled ocean algae with gemlike silica casings, are thought to collectively absorb as much carbon dioxide through

| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Photo: Nils Kroger, Regensburg University

Last summer's publication of the first diatom genome provided insight into the workings of a tiny organism with huge potential for environmental, industrial, and research applications.1 A growing appreciation of the sequence, however, has begun to divulge one of nature's wilder and most productive experiments.

Diatoms, a diverse division of one-celled ocean algae with gemlike silica casings, are thought to collectively absorb as much carbon dioxide through photosynthesis as all the world's rainforests. They appear to have descended from organisms near the plant-animal divergence in evolution, and their unique and intricate structures serve both as inspiration and model for nanofabrication technologies.

Yet beneath their sometimes striking enclosures, diatoms and many other algae reveal a sordid past of endosymbiotic events. They are, in essence, three organisms in one – or more precisely, one within another, within another. Researchers say this odd arrangement has major implications for ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Jack Lucentini

    This person does not yet have a bio.

Published In

Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer