Secondary Endosymbiosis Exposed

Photo: Nils Kroger, Regensburg UniversityLast summer's publication of the first diatom genome provided insight into the workings of a tiny organism with huge potential for environmental, industrial, and research applications.1 A growing appreciation of the sequence, however, has begun to divulge one of nature's wilder and most productive experiments.Diatoms, a diverse division of one-celled ocean algae with gemlike silica casings, are thought to collectively absorb as much carbon dioxide through

Written byJack Lucentini
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Photo: Nils Kroger, Regensburg University

Last summer's publication of the first diatom genome provided insight into the workings of a tiny organism with huge potential for environmental, industrial, and research applications.1 A growing appreciation of the sequence, however, has begun to divulge one of nature's wilder and most productive experiments.

Diatoms, a diverse division of one-celled ocean algae with gemlike silica casings, are thought to collectively absorb as much carbon dioxide through photosynthesis as all the world's rainforests. They appear to have descended from organisms near the plant-animal divergence in evolution, and their unique and intricate structures serve both as inspiration and model for nanofabrication technologies.

Yet beneath their sometimes striking enclosures, diatoms and many other algae reveal a sordid past of endosymbiotic events. They are, in essence, three organisms in one – or more precisely, one within another, within another. Researchers say this odd arrangement has major implications for ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH