Shell Sculpture

A mathematical model explains the physical mechanisms behind the formation of seashell spines, an insight that could shed light on the convergent evolution of the trait.

Written byDan Cossins
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

MODELING SPINES: Marine mollusks build their spiny shells with incremental secretions of material from the mantle, a cloak of soft tissue on the mollusk body. Researchers created a mathematical model for this process based on the mechanical deformation of the elastic mantle edge (yellow), which grows longer than the fixed shell edge (orange) and buckles when it temporarily attaches, before secreting new shell material into the deformed shape (1). Small variations in two parameters in the model—the growth rate and the heterogeneity of mantle bending stiffness at the mantle edge—accounted for a large diversity of spine structures
(2).
IMAGES COURTESY OF DEREK MOULTON, REPRODUCED WITH PERMISSION FROM PNAS 110:6015-20, 2013

The paper

R. Chirat et al., “Mechanical basis of morphogenesis and convergent evolution of spiny seashells,” PNAS, 110:6015-20, 2013.

The spines adorning the shells of marine mollusks have evolved repeatedly across distantly related lineages, most likely because they help to fend off shell-crushing predators. But this functional explanation does not address the question of how spines form. In fact, the physical processes that shape spiny shell structures and that underlie their repeated emergence are not well understood.

To tackle that question, Derek Moulton of the Mathematical Institute at the University of Oxford and colleagues developed a mathematical model to predict how natural physical processes produce a diverse range of seashell spines.

Mollusks build their shells incrementally with secretions from an organ called the mantle, an ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies