Solving AMPK

The enzyme AMP-activated protein kinase (AMPK) has been shown to be central to regulating several metabolic systems such as glucose uptake, oxidation of fatty acids, and insulin sensitivity, but the crystal structure of the mammalian enzyme remained elusive. Bing Xiao and others from the United Kingdom's National Institute for Medical Research used X-ray crystallography to map the structure of AMPK when bound to AMP and ATP, which the enzyme binds competitively,1 illuminating AMPK regul


Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

The enzyme AMP-activated protein kinase (AMPK) has been shown to be central to regulating several metabolic systems such as glucose uptake, oxidation of fatty acids, and insulin sensitivity, but the crystal structure of the mammalian enzyme remained elusive. Bing Xiao and others from the United Kingdom's National Institute for Medical Research used X-ray crystallography to map the structure of AMPK when bound to AMP and ATP, which the enzyme binds competitively,1 illuminating AMPK regulation.

"This is the first study to reveal the structural basis for AMP binding to mammalian AMPK," writes Anthony Means of the Duke University Medical Center on the Faculty of 1000 Web site. Means comments that Xiao's paper provides a hypothesis of how AMP affects AMPK activity. The enzyme consists of three protein subunits labeled α, β, and γ. This study suggests that when AMP binds to the γ subunit, the enzyme undergoes a conformational change that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours