Survival in the Microfluidics Market

Courtesy of Caliper TechnologiesImagine visiting the doctor's office for a routine annual checkup. Instead of drawing several vials of blood for analysis by an outside diagnostics lab, the doctor collects a single drop. Using a breadbox-sized instrument, she runs 20 or so tests in a matter of minutes and discusses the results with you before you leave. Meanwhile, a large pharmaceutical company down the road is using a similar, albeit larger instrument to analyze the biochemical properties of a m

| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

Courtesy of Caliper Technologies

Imagine visiting the doctor's office for a routine annual checkup. Instead of drawing several vials of blood for analysis by an outside diagnostics lab, the doctor collects a single drop. Using a breadbox-sized instrument, she runs 20 or so tests in a matter of minutes and discusses the results with you before you leave. Meanwhile, a large pharmaceutical company down the road is using a similar, albeit larger instrument to analyze the biochemical properties of a million potential lead drug compounds per hour, using picoliter samples.

Such is the promise of so-called "lab-on-a-chip" technology, which combines microfluidics (liquid handling on a nanoliter to femtoliter scale) with microfabrication techniques developed by the semiconductor industry. The resulting chips, some no larger than a computer microprocessor, perform biochemical reactions from many tiny samples in parallel, in theory reducing costs and conserving reagents while greatly improving speed and reproducibility for ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Megan Stephan

    This person does not yet have a bio.

Published In

Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer