Telomeres as the Key to Cancer

The standard modus operandi for modeling human diseases in the mouse: Find an interesting gene, knock it out, and watch what happens. In theory, the approach makes perfect sense, and scientists have obtained countless subtle insights into the complexities of biology because of it. But mice, of course, are not humans, and many investigators have had to hastily rewrite otherwise elegant theories because of mouse data. One reason? Researchers have taken for granted that telomere length matters. But

Written byJeffrey Perkel
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

Composed of both DNA and protein, telomeres are the specialized caps at the ends of linear chromosomes. The telomere's DNA contains hundreds of repetitions of a simple, short sequence (TTAGGG in humans), synthesized by a highly specialized enzyme called telomerase. From a teleological point of view, telomeres exist to solve the end replication problem, which arises from what Elizabeth Blackburn, professor of biochemistry and biophysics at the University of California, San Francisco, and telomerase's discoverer, calls a "glitch in the way the DNA replication machine is set up." The DNA polymerases that duplicate DNA are incapable of copying the very ends of a linear DNA molecule. To avoid the loss of critical genetic material, the cell caps its DNA with long stretches—10 to 20 kilobases (kb) or so in human cells—of noncoding sequence.

Telomeres have another function, too: their structure helps the cell distinguish the normal end of a linear ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies